Steps to graphing ALL graph types

- 1. Get the function in the correct form make sure if there is a "b" that it has been factored out.
- 2. Give a description of its transformations compared to the parent graph.
- 3. Write down the parent table.
- 4. Adjust parent table by multiplying "a" and "1/b"Reminder: "a" affects the range (Ys)"1/b" affects the domain (Xs)
- Adjust the new table by add/sub "h" and "k"
 Reminder: pull h (opposite) and k (same) add/sub "h" to x-values add/sub "k" to y-values
- 6. Plot your points and give the characteristics

 Standard Forms

For all types

-a:______

$$a > 1:$$

 $a < 1:$ ______

 $y = a\sqrt{b(x-h)} + k$
 $y = a\sqrt{b(x-h)} + k$

Steps to graphing ALL graph types

- 1. Get the function in the correct form make sure if there is a "b" that it has been factored out.
- 2. Give a description of its transformations compared to the parent graph.
- 3. Write down the parent table.
- 4. Adjust parent table by multiplying "a" and "1/b"
 Reminder: "a" affects the range (Ys)
 "1/b" affects the domain (Xs)
- Adjust the new table by add/sub "h" and "k"
 Reminder: pull h (opposite) and k (same) add/sub "h" to x-values add/sub "k" to y-values
- 6. Plot your points and give the characteristics

 Standard Forms

	For all types			
	-a:			
	a >1:			
$y = a\sqrt[3]{b(x-h)} + k$	a <1:			
	-b:			
	1/b >1:			
$y = a\sqrt{b(x-h)} + k$	1/b >1: 1/b <1:			
	h:			
	k:			

Square Root $y = \sqrt{x}$

$$y = \sqrt{x}$$

Cube Root
$$y = \sqrt[3]{x}$$

х | у

Χ

Characteristics

Characteristics

Vertex:

Domain: Range:

Min: Max:

Int of Inc: Int of Dec:

x-intercept: y-intercept:

end behavior:

Vertex:

Domain: Range:

Max: Min:

Int of Inc: Int of Dec:

x-intercept: y-intercept:

end behavior:

Reflections of \sqrt{x}

End: End: End: End:

Inc/Dec/Const:

Inc/Dec/Const:

Inc/Dec/Const:

Inc/Dec/Const:

Max/Min:

Max/Min:

Max/Min:

Max/Min:

Reflections of \sqrt{x}

End: End: End: End:

У

Vertex: _____

Extrema: ____

Domain:

Range: ___

Int of Inc:

Int of Dec:_

X-Intercept: __

Y-Intercept: ____

End Behavior:

_

$$g\left(x\right) = -\frac{1}{2}\sqrt{x+4}$$

ху

Vertex: _____

Extrema: ___

Domain: _____

Range: _____

Int of Inc:...

Int of Dec:____

X-Intercept: _

Y-Intercept: __

End Behavior: _

$$g(x) = \frac{1}{4}\sqrt[3]{x+1} - 2$$

ху

Vertex:				
	-			- 0

Extrema:

Domain: _____

Range: _____

Int of Inc:

Int of Dec:____

X-Intercept:

Y-Intercept: _____

End Behavior:

$$h(x) = \sqrt{-3x} + 5 \quad x \quad y$$

ху

Vertex: _____

Extrema: ______ Range: _____

Int of Inc:

Domain: ___

X-Intercept:

Int of Dec:______Y-Intercept:_____

End Behavior: _____

$$f(x) = \sqrt{x+4} + 6$$

Vertex: _____

Extrema: ______

Int of Inc.

Int of Dec:____

X-Intercept: _____

Y-Intercept: _____

End Behavior:

Domain: