Intro to Exponential Functions

F.IF.4Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

MGSE9-12.F.IF.7eGraph exponential functions, showing intercepts and end behavior.

Feb 28-10:54 AM

What am I learning today?

How to solve and describe the characteristics of an exponential function

How will I show that I learned it?

Solve, graph and identify the characteristics of exponential graphs

Vocabulary:

Exponential Function - a function with a positive constant base and a variable exponent. Example: $f(x) = 2^x$

Asymptote - A value that a function approaches but never reaches This is represented graphically by a dotted line.

Exponential Growth - An exponential graph whose magnitude of rate of change is increasing from left to right. Caused by a base greater than i. Example: $f(x) = 2^x$

Exponential Decay - An exponential graph whose magnitude of rate of change is decreasing from left to right. Caused by a base greater than o but less than 1. Example: $f(x) = (1/2)^x$

Feb 28-10:55 AM

Parent Function

Exponential Functions ($y = b^x$) when graphed are flat on one side and steep on the other.

Basics about Exponential Graphs

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Asymptote: V = 0

Extrema: none

b \geq 1

Exponential Growth

x-int: $\bigcap \bigcap e$ y-int: $(\bigcap \bigcap e)$

End Behavior: As x - 0, y

As x <u>∞</u>, y <u></u>

Nov 13-1:30 PM

Parent Function

Exponential Functions ($y = b^x$) when graphed are flat on one side and steep on the other.

Basics about Exponential Graphs

Domain: $(-\infty,\infty)$

Range: ((),

Asymptote:

Extrema: hone

b <u>≤</u> 1

Exponential <u>Decay</u>

x-int: none y-int: (0)

End Behavior: As $x - \frac{\cancel{o}}{\cancel{o}}$, $y - \frac{\cancel{o}}{\cancel{o}}$ As $x - \frac{\cancel{o}}{\cancel{o}}$, $y - \frac{\cancel{o}}{\cancel{o}}$

 $y = (1/2)^{x}$

Nov 13-1:30 PM

Range: $(-2, 0)$ Extrema: $(-2, 0)$ Exponential $(0, -1)$ As $x \to 0$, $y \to 2$ The interval $0 \le x \le 1$: $(-2, 0)$ Range: $(-2, 0)$ Exponential $(0, -1)$ As $x \to 0$, $y \to 0$ The interval $(0, -1)$ The interval $($

Oct 23-12:57 PM

Product Rule

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$x^{3} \cdot x^{4} = \chi$$

$$2^{x} \cdot 2^{3} = \chi$$

$$2^{x+3}$$

Quotient Rule

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{x^{5}}{x^{3}} = \chi^{5-3} = \chi^{2}$$

$$\frac{3^{x}}{3^{2}} = 3^{x-2}$$

Power Rule

$$(a^{x})^{y} = a^{x \cdot y}$$

 $(x^{3})^{4} = \chi^{3 \cdot 4} = \chi^{12}$
 $(2^{3})^{x+2} = \chi^{3 \times + 6}$

Negative Exponents

$$a^{-x} = \frac{1}{a^{x}}$$

$$x^{-3} = \frac{1}{X^{3}} = X^{3}$$

$$\left(\frac{1}{2}\right)^{-3} = 2^{3} = 8$$

Oct 28-1:55 PM

Steps for Solving an Exponential:

- 1. Isolate the base.
- 2. Write both sides of the equation as exponential expressions with LIKE bases.
- 3. Set the exponents equal to each other.
- 4. Distribute or multiply exponents on same side if raising a power to a power.
- 5. Solve for the unknown.

$$4^{x-3} + 2 = 66$$

$$-2 - 2$$

$$4^{x-3} = 64$$

$$(2^{2})^{x-3} = (2^{6})$$

$$2(x-3) = 6$$

$$2x - 6 = 6$$

$$+6 + 6$$

$$2x = 12$$

$$\div 2 \div 2$$

$$x = 6$$

Jan 22-1:47 PM

We use exponent rules to change bases to be the same. Then we use the exponent property of equality to solve.

Ex.
$$2^{2x} = 16$$
$$2^{2x} = 2^{4}$$
$$2x = 4$$
$$x = 2$$

Ex. 2
$$9^{3x} = 27^{1-x}$$
 Ex. 3 $4^{4x-1} > (1/32)^{x+2}$ $(2^2)^{3x} = (2^3)^{1-x}$ $(2^2)^{4x-1} > (\frac{1}{2^5})^{x+2}$ $2(3x) = 3(1-x)$ $(2^2)^{4x-1} > (2^5)^{x+2}$ $6x = 3-3x$ $2(4x-1) > -5(x+2)$ $9x = 3$ $8x-2 > -5x-10$ $13x > -8$ $x > -8$ x

Apr 1-6:17 PM

Ex. 4
$$9^{x-3} + 2 \le 29$$
 Ex. 5 $49^{x+2} = 343^{x}$ $(3^{2})^{x-3} \le 27$ $(3^{2})^{x-3} \le 3^{3}$ $2(x+2) = 3(x)$ $2(x-3) \le 3$ $2x-6 \le 3$ $2x \le 9$ $x \le \frac{9}{2}$ $(-\infty, \frac{9}{2}]$

Ex. 6
$$8^{x-3} = \left(\frac{1}{4}\right)^{2x}$$

$$\left(2^{3}\right)^{x-3} = \left(\frac{1}{2^{2}}\right)^{2x}$$

$$\left(2^{3}\right)^{x-3} = \left(2^{-2}\right)^{2x}$$

$$3(x-3) = -2(2x)$$

$$3x-9 = -4x$$

$$-9 = -7x$$

$$x = \frac{9}{7}$$

Jan 22-2:48 PM