Solve the following for the unknown variable.

1.)
$$(1/9)^x = \sqrt{3}$$

2.)
$$2^a = \sqrt{32}$$

3.)
$$b^{(-1/2)} = 4$$

4.)
$$n^{-2} = 9$$

Vocabulary

Logarithm - in the function $x = b^y$, y is called the logarithm, base b of x. This is usually written as $y = \log_b x$.

Common Logarithm - a logarithm whose base is 10, written as $\log x$. ($\log x = \log_{10} x$)

Natural Logarithm - logarithm whose base is e, $y = e^x$ and is written as $\ln x$. $(\ln x = \log_e x)$

Logarithmic Functions

EQ: What are logarithms? How are they used?

Standards:

MCC9-12.F.BF.5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents

MCC9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (*Limit to exponential and logarithmic functions.*)

MCC9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions.

MCC9-12.F.IF8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. (Limit to exponential and logarithmic functions.)

MCC9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. (*Limit to exponential and logarithmic functions.*)

What am I learning today?

How to manipulate and evaluate logarithms

How will I show that I learned it?

Simplify, evaluate, and rewrite exponential and logarithmic expressions

What is the difference between simplify and evaluate?

Simplify: make it "pretty"

ex.
$$\sqrt{24} = 2\sqrt{6}$$

Evaluate: number answer

ex.
$$\sqrt{24} = 4.898979486... \approx 4.90$$

When simplifying "e" exponents, use the same rules as other bases!

Examples

1)
$$e^3 \cdot e^7$$

5)
$$\frac{5e^2}{20e^5} = \frac{1}{4e^3}$$

$$6) \frac{e^{4x}}{e^x} = e^{3x}$$

7)
$$\sqrt{121e^6}$$
 $11e^3$

Evaluate

1)
$$e^2 \approx 7.39$$

1)
$$e^2 \approx 7.39$$
 2) $e^{-3/4} \approx 0.47$

3)
$$e^{4.3} = 73.70$$

3)
$$e^{4.3} = 73.70$$
 4) $e^{-0.12} \approx 0.89$

Logarithmic Functions

Logarithm of y with base b $\log_b y = x$ iff $b^x = y$

 $b \Rightarrow base$

y ⇒ answer

 $\dot{x} \Rightarrow exponent$

Logs are defined for positive answers only! (y > 0)

Logs have only positive bases also. (b > 0)

Exponents (x) can be ANYTHING!!!

Natural logs are logs in base e and abbreviated Ln

ln is the same as log_e

...in other words $lnx = log_ex$

Common logs are logs in base 10 and abbreviated log or log₁₀

Rewriting Logs and Exponential Equations

** To work with certain log functions and exponent function we need to be able the convert from one form from the next.

"ROLL LIKE A LOG!"

Rewrite from Log notation to Exponential notation

1.
$$\log_{3}243 = 5$$
 $243 = 3^{5}$

2.
$$\log_{10} 2 = \frac{1}{3}$$

3.
$$\log_4 = 1$$

4.
$$l = 6 = 2.77$$
 $l = 6 = 2.77$

Rewrite from Exponential to Log notation

1.
$$4^3 = 64$$

 $3 = 100_{4}64$

2.
$$5^0 = 1$$
 $0 = \log_5 1$

3.
$$(\frac{1}{2})^{-1} = 2$$

- $1 = \log_{\frac{1}{2}} 2$

4.
$$e^3 = 20.09$$

3 = $\ln (20.09)$

Evaluate WITH a calculator.

- 1. $\log 23 = 1.36$
- 3. $\log 1.25 = 0.10$ $10^{\circ.1} = 1.25$ 4. $\ln 100 = 4.61$ $e^{4.61} = 100$
- 5. $\log(\sqrt{5} + 2) = 0.63$ 6. $5.6 \ln \sqrt{431} = 16.99$
- 2. ln 2 0.69

Properties

Goal is to get both sides of the equation to have the same base so that the exponents can be set equal to each other.

If
$$a^x = a^y$$
, then $x = y$

**from Coordinate Alg

 $3^{x} = 3^{2}$

convert to a logarithm to see other rule:

$$\mathbf{a}^{\mathsf{x}} = \mathbf{a}^{\mathsf{y}}$$

If
$$\log_a x = \log_a y$$
, then $x = y$

convert to an exponent to see other rule:

$$log_{\alpha}x = log_{\alpha}y$$

Evaluate WITHOUT a calculator

STEPS...

- 1. Set the expression to "x" if not already done for you.
- 2. Rewrite log function as an exponential equation.
- 3. Rewrite so that both sides have a common (smallest) base.
- 4. Solve for x.

Evaluate WITHOUT a calculator.

1.
$$\log_3 81 = 4$$

3.
$$\log_{16} 2 = \frac{1}{4}$$
 $\log_{16} 2 = x$

2.
$$\log_9 3 = \frac{1}{2}$$

$$x = \frac{1}{2}$$
4. $\log_5 \sqrt{5} = \frac{1}{2}$

5.
$$\log_{\sqrt{3}} 27 = 6$$

$$109\sqrt{3}$$
 $27 = X$
 $27 = \sqrt{3}$
 $3^3 = 3^{\frac{1}{2}} \times$
 $3 = \frac{1}{2} \times$
 $6 = X$

6.
$$\log_8 4 = \frac{2}{3}$$

 $\log_8 4 = \times$
 $4 = 8^{\times}$
 $2^2 = 2^{3\times}$

$$2^2 = 2^{3\times}$$

7.
$$\log_{16} \frac{1}{4} = -\frac{1}{2}$$

$$109_{16} + = X$$
 $\frac{1}{4} = 16^{\times}$
 $4^{-1} = 4^{2\times}$

8.
$$\log 0.001 = -3$$
 $\log_{10}(\frac{1}{10000}) = \times$

$$\frac{1000}{1000} = 10^{\times}$$

$$X = -3$$

Brody_Roll Like a Log.xspf
Brody_Roll Like a Log 2.xspf