Warm-Up - Evaluate

- 1) $\log_4(1/32)$
- 2) $\log_{(\sqrt[3]{9})} (9^2)$
- 3) $\log_2 8 + \log_2 4$
- 4) $\log_3 81 \log_3 3$

Logarithmic Functions

EQ: What are logarithms? How are they used?

Standards:

MCC9-12.F.BF.5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents

MCC9-12.A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (*Limit to exponential and logarithmic functions.*)

MCC9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions.

MCC9-12.F.IF8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. (Limit to exponential and logarithmic functions.)

MCC9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. (*Limit to exponential and logarithmic functions.*)

What am I learning today?

How to manipulate and evaluate logarithms using their properties

How will I show that I learned it?

Expand and condense logarithmic functions using their properties

Inverse Property of Logarithms

The logarithmic function $f(x) = log_b x$ is the <u>inverse</u> of

the exponential function $g(x) = b^x$

Verify that they are inverses...

$$g(f(x)) = b^{\log_b x}$$
 and $f(g(x)) = \log_b b^x$

$$g(f(x)) = x$$
 $f(g(x)) = x$

Since f(g(x)) = g(f(x)) = x, then f(x) & g(x) are inverses

Evaluate again WITHOUT a calculator.

1.
$$19^{\log_{19} x} = x$$

2.
$$\log_3 3^{2x} = 2x$$

3.
$$\log 10000^{x}$$
 4. $e^{\ln 3x} = 3x$
 $\log_{10}(10^{4})^{x}$ $(\ln e^{5} = 5)$

4.
$$e^{\ln 3x} = 3x$$

 $\ln e^5 = 5$

Find the inverse of a Logarithmic Function

- 1. Switch x and y first!!
- 2. Isolate log_s(y) or B^{b(y-)}
- 3. Convert from log to exponent form or Vice verso.
- 4. Solve for y.

FORMATS:
$$y = aB^{b(x-h)} + k$$

 $y = a \log_{B}(b(x-h)) + k$

Examples:

- 1. $y = log_3x$ $x = log_3y$ $3^{x} = 3^{log_3y}$ $y = 3^{x}$
- 2. f(x) = ln(x+1) x = (n(y+1)) $e^{x} = e^{ln(y+1)}$ $e^{x} = y+1$ $f^{-1}(x) = e^{x}-1$
 - 3. $f(x) = \log_{\frac{3}{4}}x + 5$ $x = \log_{\frac{3}{4}}y + 5$ $x - 5 = \log_{\frac{3}{4}}y + 5$ $(\frac{3}{4})^{x - 5} = (\frac{3}{4})^{\log_{\frac{3}{4}}y}$ $f^{-1}(x) = (\frac{3}{4})^{x - 5}$
 - 4. $y = log_5(x + 3) 6$ $x = log_5(y+3) - 6$ $x+6 = log_5(y+3)$ $5^{x+6} = 5^{log_5(y+3)}$ $5^{x+6} = y+3$ $y = 5^{x+6} - 3$

5.
$$y = -3\log(x - 7) + 12$$
 $x = -3\log(y - 7) + 12$
 $x = -3\log(y - 7) + 12$
 $x = -3\log(y - 7)$
 $-\frac{1}{3}(x - 12) = \log(y - 7)$
 $-\frac{1}{3}(x - 12) = \log(y - 7)$
 $10^{-\frac{1}{3}(x - 12)} = 10^{\log(y - 7)}$
 $10^{-\frac{1}{3}(x - 12)} = 10^{-\frac{1}{3}(x - 12)}$
6. $y = \ln(\frac{1}{2}(x + 8) - 6$
 $x = \ln(\frac{1}{2}(y + 16)) - 6$
 $x + 6 = \ln(\frac{1}{2}(y + 16))$
 $e^{x + 6} = e^{\ln(\frac{1}{2}(y + 16))}$
 $e^{x + 6} = e^{\ln(\frac{1}{2}(y + 16))}$
 $e^{x + 6} = \frac{1}{2}(y + 16)$
 $e^{x + 6} = \frac{1}{2}(y + 16)$
 $e^{x + 6} = \frac{1}{2}(y + 16)$
 $e^{x + 6} = \frac{1}{2}(y + 16)$

7.
$$y = 5^{x-4} + 7$$
 D: $(-\infty, \infty)$ R: $(-3, \infty)$
 $x = 5^{y-4} + 7$
 $x - 7 = 5^{y-4}$
 $|\cos_5(x - 7)| = |\cos_5 5^{y-4}|$
 $|\cos_5(x - 7)| = |\cos_5(x - 7)|$
 $|\cos_5(x - 7)| = |\cos_5(x$

Notes - Logarithmic and Exponential Inverses.notebook	February 05, 202

Brody_Roll Like a Log.xspf
Brody_Roll Like a Log 2.xspf