Solving Logarithmic and Exponential Equations

MGSE9-12.F.BF.5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

MGSE9-12.F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

MGSE9-12.F.IF.8b Use the properties of exponents to interpret expressions for exponential functions.

What am I learning today?

How to use logarithmic properties to solve equations

How will I show that I learned it?

Solve equations using exponential and logarithmic operations and properties

Properties of the Natural Logarithm

$$ln e = 1$$

$$ln 1 = 0$$

$$e^{\ln x} = x$$

Reminder: Change of base formula

$$\log_a b = \underline{\log b} = \underline{\ln b}$$
$$\log a \quad \ln a$$

Example:
$$\log_4 12 = \frac{\log_4 12}{\log_4 1} = 1.79$$

Solving Exponential Equations

Type 1: Powers of the same base

- Isolate the exponential part(s).
- Eliminate the base leaving only the exponential part.
- Always check your answers!!

1)
$$4^{3x} = 8^{x+1}$$
 2) $\left(\frac{1}{25}\right)^{2x+3} = 5^{x-5}$
 $(2^2)^{3x} = (2^3)^{x+1}$ $(5^{-2})^{2x+3} = 5^{x-5}$
 $6x = 3x+3$ $-2(2x+3) = x-5$
 $3x = 3$ $-4x-6 = x-5$
 $-6 = 5x-5$
 $-1 = 5x$
 $x = -\frac{1}{5}$

Type 2: Bases are NOT powers of the same base

- Isolate the exponential part(s).
- Apply a logarithm to each side. Use change of base to help solve. to check your work.
- Always check your answers!!

Examples: Solve for x.

1)
$$2^{x} = 7$$
 $109_{2}^{2^{x}} = 109_{2}^{2^{x}}$
 $109_{2}^{2^{x}} = 109_{2}^{2^{x}}$

2)
$$40 e^{0.6x} + 20 = 240$$

$$-20 -20$$

$$40e^{0.6x} = 220$$

$$e^{0.6x} = \frac{11}{2}$$

$$\ln e^{0.6x} = \ln(\frac{11}{2})$$

$$0.6x = \ln(\frac{11}{2})$$

$$x = \frac{\ln(\frac{11}{2})}{0.6} \cdot \frac{10}{10}$$

$$= \frac{\ln \ln(\frac{11}{2})}{6} = \frac{5 \ln(\frac{11}{2})}{3}$$

3)
$$2^{x} = 3^{x-1}$$
 $\log_{3} 2^{x} = (\log_{3} 3^{x-1})$
 $\times \cdot (\log_{3} 2 = x-1)$
 $\times \cdot (\log_{3} 2 - x = -1)$
 $\times (\log_{3} 2 - 1) = -1$
 $\times = \frac{-1}{\log_{3} 2 - 1}$

(start on side with more difficult exponent)

Solving Logarithmic Equations

Type 3: Logs on each side have same base.

- Every term has $log_a(?)$. Condense until each side has only one $log_a(?)$.
- Set the answers equal to each other. Then solve.
- **Always check your answers!! There <u>are</u> extraneous situations ($log_b \times > 0$)

Examples: Solve for x.

1)
$$\log_7(5x - 1) = \log_7(x + 7)$$

 $5x - 1 = x + 7$
 $4x - 1 = 7$

2)
$$\ln x - \ln 9 = \ln 3$$

 $\ln \overset{2}{+} = \ln 3$
 $\frac{2}{+} = 3$
 $\frac{2}{+} = 2 + 1$

Type 4: Log on only one side of the equation!

- Get $Log_{\times}(?)$ by itself on the one side. Condense if necessary.
- Change the log equation to exponent form.
 Then solve.
- Always check your answers!! There are extraneous situations. $(log_b \times 0)$

Examples: Solve for x.

1)
$$\log_5(3x + 1) = 2$$

 $5^{\log_5(3x+1)} = 5^2$
 $3x+1=25$
 $3x=24$
 $x=8$

2)
$$\log_{8}(x-3) + \log_{8}(x+4) = 1$$

 $\log_{8}(x-3)(x+4) = 1$
 $\log_{8}(x^{2}+x-12) = 1$
 $\log_{8}(x^{2}+x-12) = 8^{1}$
 $\chi^{2}+\chi-12 = 8$
 $\chi^{2}+\chi-20 = 0$
 $(x+5)(x-4) = 0$
 $\chi=-5(x-4)$
 $\chi=-5(x-4)$
 $\chi=-5(x-4)$

Mixed Examples:

1)
$$9(12^{3\times -5}) - 75 = 1221$$

 $9(12^{3\times -5}) = 1296$
 $12^{3\times -5} = 144$
 $12^{3\times -5} = 12^{2}$
 $3\times -5 = 2$

2)
$$\log_{4}x + \log_{4}(x^{2} - 3) = \log_{4}3x$$

 $\log_{4}[x(x^{2} - 3)] = \log_{4}3x$
 $x(x^{2} - 3) = 3x$

$$x_3 - 9x = 0$$

3)
$$\ln x + \ln (x - 5) = 1$$

 $\ln [x(x-5)] = 1$
 $\ln [x^2 - 5x] = 1$
 $x^2 - 5x = e^1$
 $x^2 - 5x - e = 0$

$$(-5)^{2}$$
- $4(i)(-e)=25+4e$

$$x = \frac{5+\sqrt{25+4e}}{2}$$

$$x = \frac{5-\sqrt{25+4e}}{2}$$

4)
$$16^{2x+1} = \frac{1}{32}$$

 $(2^4)^{2x+1} = 2^{-5}$
 $4(2x+1) = -5$
 $8x+4=-5$
 $8x=-9$
 $x=-\frac{9}{8}$

5)
$$15 - 2\log_4(28x + 8) = 3$$

 $-2\log_4(28x + 8) = -12$
 $\log_4(28x + 8) = 6$
 $28x + 8 = 4^{\circ}$
 $28x + 8 = 4096$
6) $5^{x-3} = -341$
 0 Solution

7)
$$\log_{5}(9x-1) = \log_{5}(4x-16)$$
 $9x-1=4x-16$
 $5x-1=-16$
 $5x=-15$
 $x=-3$
 $x=-15$
 $x=-1$

9)
$$10^{2x-3} + 4 = 21$$

 $10^{2x-3} = 17$
 $2x-3 = 109(17)$
 $2x = 109(17) + 3$
10) $\log_{6}(x+5) + \log_{6}x = 2$
 $\log_{6}(x^{2}+5x) = 2$
 $x^{2}+5x=6^{2}$
 $x^{2}+5x-36=0$
11) $3+5^{2}=18$
 $x=109_{5}$ 18

HW: Mixed Solving WS