Warm-up: Identify the parent function. Identify all transformations and write the transformed parent table. Finally, rewrite the expression.

$$g(x) = 8(4)^{3-x} - 6$$

Writing Exponential Equations

MGSE9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational, and exponential functions (integer inputs only).

MGSE9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase "in two or more variables" refers to formulas like the compound interest formula, in which A = P(1 + r/n)nt has multiple variables.)

What am I learning today?

How to write the equation for an exponential function

How will I show that I learned it?

Recognize an exponential scenario and write an equation to model it

An exponential function is created by MULTIPLYING BY THE SAME NUMBER.

It takes the general form of

$$f(x) = a(b)^{nx} + k$$

where a is the initial value, b is the multiplier, x is the time, n is the frequency of change and k is a constant.

Steps for writing exponential equations:

Step 1: Find the value you are starting with. Label this "a".

Step 2: Find your ratio of increase. If it is a %, change it to a decimal and add it to 1 if the problem is increasing or subtract it from 1 for decreasing. Label this "b".

Step 3: Plug into the formula $y = A(B)^{-1}$

Step 4: When solving, pay attention to the rate of change. Divide your time by your rate to find the proper value of x.

Ex. A There are 10 mushrooms in your yard. The mushrooms double every 2 days.

a) Write an equation for this if x=# of days.

$$a = 10$$

 $b = 2 (double) f(x) = 10(2)^{\frac{x}{2}}$

b) How many mushrooms will there be in 15 days? $f(15) = 10(2)^{\frac{1}{2}}$

$$1760 \times = 1810.19$$

$$\approx 1810 \text{ mushrooms}$$

Ex. B A hand sanitizer kills 1/2 of the germs after each use. You have 5,000,000 germs on your hands now.

a) Write an equation for this if x=# of uses.

$$\alpha = 5,000,000 f(x) = 500000(\frac{1}{2})^{x}$$

b) How many germs will you have after 5 uses?

$$f(5) = 500000(\frac{1}{2})^3$$

= 156,250 germs

If there is a % change, the base is (1 + r) for growth and (1 - r) for decay.

What's going to be the base of your exponential in the following cases?

1. 20% increase

3. 12.5% increase

2.5% increase 4. 3.5% decrease
$$1+.125=1.125^{\times}$$
 $1-.035=.965^{\times}$

Ex. A The population of Atlanta was 420,000 in 2010 and expected to grow at a rate of 8% per decade. Predict the population, to the nearest ten thousand, for the year 2035.

$$0 = 420,000$$
 $6 = 1.08$
 $1 = 420000(1.08)^{\frac{1}{10}}$
 $1 = 10$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2010 = 25$
 $1 = 2035 - 2000 = 25$
 $1 = 2035 - 2000 = 25$
 $1 = 2035 - 2000 = 25$
 $1 = 2035 - 2000 = 25$

Steps for Writing Exponential Equations from a Table:

Step 1: Find the y-intercept. Label this "a".

Step 2: Find your ratio of change by dividing the 2nd # by the 1st #. Check it by dividing the 3rd # by the 2nd #. Label this "b".

Step 3: Plug into the formula $y = A(B)^x$

Your credit card debt is growing according to the following table.

Month	Debt
0	-\$50.00
1	-\$52.00
2	-\$54.08
3	-\$56.24
4	-\$58.49

Write an equation to represent how much you owe based on how many months you haven't paid off the debt.

$$A = -50$$

$$b = \frac{-52}{-50} = 1.04$$

$$f(x) = -50(1.04)^{x}$$

Your credit card debt is growing according to the following table.

Month	Debt
0	-\$50.00
1	-\$52.00
2	-\$54.08
3	-\$56.24
4	-\$58.49

If you wait 1 year to pay off the debt, how much will you owe? How much additional money are you paying in interest?

Your credit card debt is growing according to the following table. rate = slope

•	
Month	Debt
0	-\$50.00
1	-\$52.00
2	-\$54.08
3	-\$56.24
4	-\$58.49

When is your debt growing more quickly? Between months 1 and 3 or months 10 and 12?

RoC₁₋₃= $\frac{56.24-(-52)}{3-1}$ = $-\frac{$2.12}{month}$ (10,-74.01) (12,-80.05)

RoC₁₀₋₁₂= $\frac{-80.05-(-74.01)}{12-10}$ = $-\frac{$3.02}{month}$

Compound Interest Formula

$$A = P\left(1 + \frac{r}{n}\right)^{nt} \quad P\left(1 + \frac{r}{n}\right)^{n}$$

A = final amount of money

P = Principal Investment (initial amount of money)

r = % change as a decimal

n = number of times compounded per year

If you have \$5000 compounded quarterly at a rate of 6%, how much will you have after 5 years? h=4

If you have \$5000 compounded monthly at a rate of 6%, how much will you have after 5 years?

$$A = 5000(1 + \frac{06}{12})^{12.5} = $6744.25$$

If you have \$5000 compounded monthly at a rate of 8%, how much will you have after 5 years?

$$A=5000(1+\frac{.08}{12})^{2.5}=$7449.23$$

If you have \$5000 compounded monthly at a rate of 8%, how much will you have after 10 years?

$$A = 5000 \left(1 + \frac{.08}{12}\right)^{12.10} = $11,098.20$$

The number <u>e</u>

- Considered the "natural base" or the "Euler Number"

- Created by
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

- ≈ 2.72 (expanded: 2.718281828459...)

Continuously Compounded

$$A = \underline{Pe^{rt}}$$

A = final amount of money

P = Principal Investment (initial amount of money)

r = % change as a decimal

t = number of years

If you have \$5000 compounded continuously at a rate of 6%,

If you have \$5000 compounded continuously at a rate of 6%, how much will you have after 8 years?